## Maths Assessment Year 6: Algebra

1. Use simple formulae.
2. Generate and describe linear number sequences.
3. Express missing number problems algebraically.
4. Find pairs of numbers that satisfy an equation with two unknowns.
5. Enumerate possibilities of combinations of two variables.

## Maths Assessment Year 6: Algebra

1. Use simple formulae.
a) Calculate the value of the letter in each equation:

| $3 a=12$ | $a=$ |
| :--- | :--- |
| $30=5 b$ | $b=$ |
| $8 c=72$ | $c=$ |
| $48=12 d$ | $d=$ |

b) Calculate the value of the letter in each equation:

| $20=4 h+4$ | $h=$ |
| :--- | :--- |
| $3 i+5=11$ | $i=$ |
| $14=6 j-4$ | $j=$ |
| $2 k-5=5$ | $k=$ |

c) In these equations, $\mathbf{a}$ is worth 7. Calculate the value of each shape:

| $\Delta=3 a$ | $\triangle=$ |
| :---: | :---: |
| $4+a=\square$ | $\triangle=$ |
| $\widehat{\}=10-\mathrm{a}$ | $\langle=$ |
| $a+a=\square$ | $\square=$ |

2. Generate and describe linear number sequences.
a) Fill in the first two terms in this sequence:

$$
\begin{array}{lll}
55 & 63 & 71
\end{array}
$$

b) 8 is the first term in this sequence. What is the 7th term?
$\begin{array}{llll}8 & 11 & 14 & 17\end{array}$
c) Find the missing numbers in this sequence:

$$
22
$$70

d) The formula $5 n+1$ can be used to calculate the value of the terms in this sequence:
6
11
16
21
26

Fill in the missing information in this table:

| term | calculation | value |
| :--- | :--- | :--- |
| 1 st | $5 \times 1+1$ | 6 |
| 5th |  |  |
| 10th |  | 51 |
| 20 th | $5 \times 20+1$ |  |

$\begin{array}{llllll}\text { e) } & 3 & 7 & 11 & 15 & 19\end{array}$
11 is the third term in this sequence. Circle the formula that could be used to calculate this term:

| $3 \times 4-1$ | $3 \times 5-1$ | $3 \times 4+1$ |
| :--- | :--- | :--- |

f) $\begin{array}{llllll}12 & 22 & 32 & 42 & 52\end{array}$

12 is the first term in this sequence. Calculate the 9th term, showing the formula you would use:

## 3. Express missing number problems algebraically.

a) A plumber charges $£ 16$ for each job that he attends, and then $£ 9$ per hour for every hour that he works. Circle the formula that could be used to calculate how much the plumber would charge for a job:
h stands for the number of hours worked

| $9 h-16$ | $16 h+9$ | $9 h+16$ |
| :---: | :---: | :---: |

b) Emily and Becky are sisters. This formula can be used to calculate Becky's age, compared to Emily's age:

$$
e+4=b
$$

e stands for Emily's age.
b stands for Becky's age.
When Emily is 11, how old will Becky be?
When Becky is 17, how old will Emily be? $\qquad$
c) A gardener calculates the perimeter of a garden to work out how much fencing is needed. She uses this formula:
l + w + l + w

I stands for the length of the garden.
w stands for the width of the garden.
Simplify this formula:
d) A builder needs to calculate the area of a bathroom floor, to work out how much it will cost to tile it. Tiles cost $£ 5$ per square metre, plus $£ 10$ for delivery. He uses this formula:

$$
5 a+10
$$

a stands for area of the floor (in square metres).
Calculate the cost of tiling a floor, where the area is 10 square metres:

Calculate the area of a floor, where the cost of tiles is $£ 110$ :
e) A painter and decorator charges $£ 8$ for every hour that she works, and she is currently offering a discount of $£ 5$ on each job.
Write the formula she could use to calculate how much money to charge her customers.
Use $\boldsymbol{h}$ to represent the number of hours.
$\qquad$

## 4. Find pairs of numbers that satisfy an equation with two unknowns.

a) Find 3 different possible pairs of values for $\boldsymbol{a}$ and $\boldsymbol{b}$ in this equation:

$$
a b=18
$$

( $\mathbf{a}$ and $\mathbf{b}$ are whole numbers.)

| Value of $a$ | Value of $b$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

b) Find 3 different possible pairs of values for $\boldsymbol{a}$ and $\mathbf{b}$ in this equation:

$$
19=a b+7
$$

( $\mathbf{a}$ and $\mathbf{b}$ are whole numbers.)

| Value of $a$ | Value of $b$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

c) Calculate the value of each letter:

| $e f=21$ | $e+f=10$ | $e<f$ | $e=\ldots \ldots \ldots \ldots \ldots$ | $f=\ldots \ldots \ldots \ldots \ldots$ |
| :--- | :--- | :--- | :--- | :--- |
| $g-h=3$ | $g+h=9$ |  | $g=\ldots \ldots \ldots \ldots \ldots$ | $h=\ldots \ldots \ldots \ldots \ldots$ |
| $i \div j=4$ | $i j=16$ | $i>j$ | $i=\ldots \ldots \ldots \ldots \ldots$ | $j=\ldots \ldots \ldots \ldots \ldots$ |

## 5. Enumerate possibilities of combinations of two variables.

a) In this equation, $\mathbf{a}$ and $\mathbf{b}$ are different whole numbers which are both less than 11.

$$
2 a=b
$$

Write the calculations that would show all the possible values of $\mathbf{a}$ and $\mathbf{b}$ :
b) Use this equation to fill in the missing information in the table below:

$$
7 a+4=b
$$

| Value of $a$ | Value of $b$ |
| :--- | :--- |
| 2 |  |
|  | 11 |
| 4 | 25 |
|  |  |

