Maths Assessment Year 6: Algebra Term 2

1. Use simple formulae.
2. Generate and describe linear number sequences.
3. Express missing number problems algebraically.
4. Find pairs of numbers that satisfy an equation with two unknowns.
5. Enumerate possibilities of combinations of two variables.

Maths Assessment Year 6: Algebra Term 2

1. Use simple formulae.
a) Calculate the value of the letter in each equation:

$2 a=18$	$a=$
$45=9 b$	$b=$
$7 c=56$	$c=$

b) Calculate the value of the letter in each equation:

$3 d-6=9$	$d=$
$81=4 e+13$	$e=$
$25-7 f=11$	$f=$

c) In these equations, \mathbf{x} is worth 6 . Calculate the value of \mathbf{y}.

$y=2 x+13$	$y=$
$100-7 x=y$	$y=$
$y=x^{2}$	$y=$

d) The cost of producing a pack of pens is calculated as follows:

Cost $=$ number of pens $\times 12 p+5 p$ for the box
How much will a pack of 6 pens cost to produce?

A pack of pens costs $£ 2.45$. How many pens are in the pack?

2. Generate and describe linear number sequences.
a) Fill in the first two terms in this sequence:

		108	119	130

b) 16 is the first term in this sequence. What is the eighth term?

$$
\begin{array}{llll}
16 & 21 & 26 & 31
\end{array}
$$

c) Find the missing numbers in this linear sequence:

35		53	

d) The formula $3 n-\mathbf{7}$ can be used to calculate the value of the terms in this sequence:
-4
2
5
8

Fill in the missing information in this table:

term	calculation	value
1 st	$3 \times 1-7$	-4
5th		
10 th		23
20 th	$3 \times 20-7$	

e) The sequence 5, 8, 11, 14 can be expressed as $\mathbf{3 n + 2}$, where \boldsymbol{n} is the term.
i. Express the sequence $7,11,15,19$, where \mathbf{n} is the term.

ii. What is the $10^{\text {th }}$ term?

iii. Which term is 123 ?

3. Express missing number problems algebraically.
a) A taxi driver uses the following charges: $£ 4$ journey charge and $£ 2$ per mile. Circle the formula that could be used to calculate how much the taxi driver will charge for each journey.
\mathbf{m} stands for the number of miles.

$$
4 m+2 \quad 4 m-2 \quad 2 m+4 \quad 2 m-4
$$

b) The letter \mathbf{p} is 10 less than the letter \mathbf{q}.

Write 2 algebraic expressions to show the relationship between \mathbf{p} and \mathbf{q}, using different operations.

c) Circle any expression that is not an accurate simplification of the expression $a+a+a+b$:
$3 a+b$
$b+3 a$
$3 a=b$
d) An online shop sells football shirts for $£ 8$, with $£ 5$ for delivery. To calculate the cost of each order the shop uses the following formula:
$8 n+5$
\boldsymbol{n} stands for the number of shirts in each order.
i. Calculate the cost of ordering 12 shirts.

ii. A football club places an order costing $£ 365$. Calculate how many shirts are ordered.

e) A school supplier sells boxes of A4 paper for $£ 4$, and offers a $£ 2$ discount on any order paid for in advance. Write the formula the supplier would use for calculating what to charge for any order paid in advance.
Use \mathbf{n} to represent the number of boxes purchased.

4. Find pairs of numbers that satisfy an equation with two unknowns.

a) Find 3 different possible pairs of values for a and b in this equation, where a and b are whole numbers:
$a b=12$

Value of a	Value of b

b) Find 3 different possible pairs of values for a and b in this equation, where a and b are whole numbers:

$$
a b-15=17
$$

Value of a	Value of b

c) Calculate the value of each letter:

$e f=21$	$e+f=10$	$e<f$	$e=\ldots \ldots \ldots \ldots \ldots$
$g-h=3$	$g+h=9$	$g=\ldots \ldots \ldots \ldots \ldots$	$h=\ldots \ldots \ldots \ldots \ldots$
$i \div j=4$	$i j=16$	$i=\ldots \ldots \ldots \ldots \ldots$	$j=\ldots \ldots \ldots \ldots \ldots$

5. Enumerate possibilities of combinations of two variables.

In this equation, \mathbf{a} and \mathbf{b} are different whole numbers that are between 10 and 20.
a) Write the calculations that would show all the possible values of a and b.
$a-b=6$
b) Use this equation to fill in the missing information in the table below:
$a+11=3 b$

Value of a	Value of b
1	
	5
10	6

