Area of a Triangle 2

1. The area underneath a staircase needs to be wallpapered, but Harry has lost his tape measure! He has estimated the lengths of the base and height and drawn a plan of the area.

He says,

Each sachet of wallpaper paste covers $0.5 \mathrm{~m}^{2}$.
What are the greatest and smallest numbers of sachets he will need?
Smallest: $2.5 \mathrm{~m} \times 3 \mathrm{~m}=7.5 \mathrm{~m} ; 7.5 \mathrm{~m} \div 2=3.75 \mathrm{~m}^{2} .3 .75 \mathrm{~m}^{2} \div 0.5 \mathrm{~m}^{2}=7.5$ sachets
Largest: $3 \mathrm{~m} \times 3.5 \mathrm{~m}=10.5 \mathrm{~m}^{2} ; 10.5 \mathrm{~m}^{2} \div 2=5.25 \mathrm{~m}^{2} .5 .25 \mathrm{~m}^{2} \div 0.5 \mathrm{~m}^{2}=10.5$ sachets
Not to scale
2. Farmers Frank and Fred each have a triangular field.

Frank's field is the shape of a right-angled triangle. The two shorter sides, when added together, produce the same number as the area.

Fred says,

Investigate what the dimensions of both fields could be. Find 3 solutions.
Frank's field: $3 \mathrm{~m} \times 6 \mathrm{~m}=18 \mathrm{~m} ; 18 \mathrm{~m} \div 2=9 \mathrm{~m}^{2} ; 3 \mathrm{~m}+6 \mathrm{~m}=9 \mathrm{~m}$
Fred's field: $4 \mathrm{~m} \times 4 \mathrm{~m}=16 \mathrm{~m} ; 16 \mathrm{~m} \div 2=8^{2} ; 4 \mathrm{~m}+4 \mathrm{~m}=8 \mathrm{~m}$

