Reasoning and Problem Solving

Area of a Parallelogram

Reasoning and Problem Solving

 Area of a Parallelogram
Developing

1a. No; the area of the parallelogram is $6 \mathrm{~cm} \times 4 \mathrm{~cm}=24 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $24 \mathrm{~cm}^{2} \div 2=12 \mathrm{~cm}^{2}$, not $24 \mathrm{~cm}^{2}$.
2a. 4,000 tiles; the area of each tile is $20 \mathrm{~cm}^{2}$ ($5 \mathrm{~cm} \times 4 \mathrm{~cm}$) and the area of the pool he wants to tile is $80,000 \mathrm{~cm}^{2}(400 \mathrm{~cm} \times 200 \mathrm{~cm})$. $80,000 \mathrm{~cm}^{2} \div 20 \mathrm{~cm}^{2}=4,000$.
3 a . No; $21 \mathrm{~cm}^{2} \div 7 \mathrm{~cm}=3 \mathrm{~cm}$, not 2 cm .

Expected

4a. No; the area of the parallelogram is $12 \mathrm{~cm} \times 5.5 \mathrm{~cm}=66 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $66 \mathrm{~cm}^{2} \div 2=33 \mathrm{~cm}^{2}$, not $60 \mathrm{~cm}^{2}$.
$5 a .400$ paving stones; the area of each stone is $150 \mathrm{~cm}^{2}(15 \mathrm{~cm} \times 10 \mathrm{~cm})$ and the area of the garden he wants to cover is $60,000 \mathrm{~cm}^{2}(400 \mathrm{~cm} \times 150 \mathrm{~cm}) \cdot 60,000 \mathrm{~cm}^{2} \div$ $150 \mathrm{~cm}^{2}=400$.
6 a . No; $60 \mathrm{~cm}^{2} \div 24 \mathrm{~cm}=2.5 \mathrm{~cm}$, not 2 cm .

Greater Depth

7a. No; the area of the parallelogram is $15 \mathrm{~m} \times 6.2 \mathrm{~m}=93 \mathrm{~m}^{2}$, so half the area of the parallelogram is $93 \mathrm{~m}^{2} \div 2=46.5 \mathrm{~m}^{2}$, not $46 \mathrm{~m}^{2}$.
8 a. 200 patches; the area of each patch is $52 \mathrm{~cm}^{2}(8 \mathrm{~cm} \times 6.5 \mathrm{~m})$ and the area of the quilt she is creating is $10,400 \mathrm{~cm}^{2}(800 \mathrm{~cm} \mathrm{x}$ $13 \mathrm{~cm}) .10,400 \mathrm{~cm}^{2} \div 52 \mathrm{~cm}^{2}=200$.
9a. No; $75 \mathrm{~cm} \div 15 \mathrm{~cm}=5 \mathrm{~cm}$ (which is 50 mm , not 500 mm).

Developing

1b. Yes; the area of the parallelogram is $8 \mathrm{~cm} \times 5 \mathrm{~cm}=40 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $40 \mathrm{~cm}^{2} \div 2=20 \mathrm{~cm}^{2}$.
2b. 2,000 tiles; the area of each tile is $30 \mathrm{~cm}^{2}$ $(6 \mathrm{~cm} \times 5 \mathrm{~cm})$ and the area of the floor he wants to cover is $60,000 \mathrm{~cm}^{2}(300 \mathrm{~cm} x$ 200 cm). $60,000 \mathrm{~cm}^{2} \div 30 \mathrm{~cm}^{2}=2,000$.
3 . Yes; $36 \mathrm{~cm}^{2} \div 6 \mathrm{~cm}=6 \mathrm{~cm}$.

Expected

4b. No; the area of the parallelogram is $16 \mathrm{~cm} \times 0.45 \mathrm{~cm}=72 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $72 \mathrm{~cm}^{2} \div 2=36 \mathrm{~cm}^{2}$, not $36 \mathrm{~mm}^{2}$.
5b. 250 tiles; the area of each tile is $500 \mathrm{~cm}^{2}$ ($25 \mathrm{~cm} \times 20 \mathrm{~cm}$) and the area of the bathroom he wants to tile is $125,000 \mathrm{~cm}^{2}$ $(500 \mathrm{~cm} \times 250 \mathrm{~cm}) \cdot 125,000 \mathrm{~cm}^{2} \div 500 \mathrm{~cm}^{2}=$ 250.

6b. No; $55 \mathrm{~cm}^{2} \div 10 \mathrm{~cm}=5.5 \mathrm{~cm}$, not 5 cm .

Greater Depth

7b. Yes; the area of the parallelogram is $25 \mathrm{~m} \times 4.4 \mathrm{~m}=110 \mathrm{~m}^{2}$, so half the area of the parallelogram is $110 \mathrm{~m}^{2} \div 2=55 \mathrm{~m}^{2}$.
8b. 200 paving stones; the area of each stone is $40.5 \mathrm{~cm}^{2}(9 \mathrm{~cm} \times 4.5 \mathrm{~cm})$ and the area of the path he wants to cover is
$8,100 \mathrm{~cm}^{2}(90 \mathrm{~cm} \times 90 \mathrm{~cm})$.
$8,100 \mathrm{~cm}^{2} \div 40.5 \mathrm{~cm}^{2}=200$.
9b. No; $77 \mathrm{~cm}^{2} \div 22 \mathrm{~cm}=3.5 \mathrm{~cm}$ (which is 35 mm , not 30 mm).

